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if Rp and Rq correspond to symmetry operators of 
order two, E 5 and E 6 a r e  centrosymmetric reflexions. In 
fact, if R m is a rotation matrix for which Rp R m = Rq 
(then Rq R,n = Rp also), we have 

h ( R p -  Ro)R m = h(R ° -- Ru ) = - - h ( R p - -  Rq), 

which in terms of phases gives, because of (4), 

~h(Rp-Rq)Rm = ~ h ( R p - R q ) -  27rh(Rp- Rq)T m - -  --~h(Rp-Rq)" 

1,76) 

From (76), 

qTh(R _R~ ) -- 7[h(Rp- Rq)T m 

is easily obtained, and gives the restricted phase values 
for tPh(sp-aq). If E 5 and E 6 are centrosymmetric 
reflexions, (60) no longer holds; in fact, the modified 
Bessel function of zero order involving Z 5 and Z 6 has to 
be replaced by hyperbolic cosines of suitable argu- 
ments and a suitable B' value has to replace B. 
Furthermore, the problem of generalizing (60)to cases 
in which more (Rp, Rq) pairs exist, which give rise to 
the crystallographically independent generalized 
solutions (h~, h2) of system (5), needs to be solved. All 
these theoretical aspects are discussed elsewhere 
(Giacovazzo, 1979b) where a general distribution 
function is given, which in several cases can be con- 
sidered a useful approximation of the 'true' distribution 
of O. 

8. Concluding remarks 

A theory has been described which is capable of 
deriving for any space group the value of a two-phase 
seminvariant of first rank, • = tp= + ~0v, given all or 
some of the magnitudes belonging to the first phasing 
shell of O. The probabilistic formulae are derived both 
by using the exponential forms of the characteristic 
functions of the joint probability distributions studied 
and via their Gram-Charlier expansion. A general 
algebra for two-phase seminvariants of first rank has 
been developed which makes their estimation easier in 
the automatic procedures for phase solution. 
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Abstract 

With the space-filling elongated dodecahedron or its 
truncated form as a coordination polyhedron for larger 
atoms, structures like BaAI4, CeMg2Si2, BaHgl~ and 
ThMnl2 can be accurately described. 

Introduction 

When an alloy contains atoms of very different sizes, it 
is often useful to describe the structure by a polyhedron 

0567-7394/79/020305-04501.00 

of the smaller atoms coordinating the larger atom. An 
example of this is NaZn13 (Shoemaker, Marsh, Ewing 
& Pauling, 1952). Zn atoms are at the corners of a 
regular snub cube which is centred by a Na atom, and 
such snub cubes form the structure by sharing square 
faces. When dissecting various alloy structures we 
came across some that could be described by the so- 
called elongated dodecahedron, one of Federov's five 
space-filling polyhedra. 

The elongated dodecahedron is a polyhedron with 18 
corners. It is obtained if the rhombic dodecahedron is 
elongated along one of its fourfold axes (Fig. 1). The 
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hexagons formed are not regular as they contain the 
rhombic polygon angles. There are three different 
centre-corner distances of C-(1)  = 1.2583d, C-(2)  = 
1.3518d and C-(3)  = 1.6546d, where d is the edge and 
C the centre and (1), (2) and (3) mark the corners of 
the polyhedron. Of the structures described below, 
BaAI 4 has this polyhedron, while CeMg2Si 2, BaHgll 
and ThMnl,  are better described with a truncated form, 
obtained by the removal of corner atom (3) (Fig. 2). In 
fact, the square faces of the truncated dodecahedra in 
CeMg2Si 2 and ThMn12 are capped with the central 
atoms in two adjacent truncated dodecahedra, which 
means that complete elongated dodecahedra are inter- 
penetrating. Nevertheless, it is easier to describe these 
two structure types with the truncated elongated 
dodecahedron. 

BaAI 4 

The structure type represented by BaA14 is rather 
common. The structure is tetragonal with a = 4.530, 
c = 11-14/~. The space group is I4/mmm, with two Ba 
in 2(a), four A1 in 4(d) and four A1 in 4(e) with z = 
0.380 (Andress & Alberti, 1935). The structure should 
be common for ternary systems, which is also the case. 

3 

(a) (b) 
Fig. 1. (a) The elongated rhombie dodecahedron. (b) An ordinary 

rhombic dodecahedron is shown. 

Several rare-earth transition-metal silicides have this 
structure, e.g. ThCr2Si 2 and ThMn2Si 2 (Mn, Cr and Si 
are similar in size). 

The structure is shown in Fig. 3, projected along a, 
and it can be seen how the elongated dodecahedra have 
the same orientation and fill space. The polyhedra share 
hexagons and rhombs and the coordination number for 
Ba is 22 (18 AI and 4 Ba), the central Ba atoms in four 
adjacent elongated dodecahedra capping the hexagonal 
faces. 

Calculated cell parameters for a structure built up of 
ideal elongated dodecahedra are: 

2dx/6 
a = - - -  1.633d 

3 

c = 2 d  1 +  =4 .309d ,  
3 

where d is the edge of the polyhedron. Furthermore: 

c/a = 2-64 

and the parameter of position 4(e) is 

4x/3 + 3 
z = = 0.384. 

12 + 8 x / 3  

The observed parameters are given in Table 1. 

Table 1. Observed parameters 

c/a z 

BaAI 4 2.46 0.380 

ThCr2Si 2 2 .62 0.374 

ThMn2Si z 2.61 0.386. 

CeMg2Si2 

This tetragonal structure, with a = 4.35, c = 5 .76 /k ,  
P4/mmm (Zmii & Gladysevskii, 1970), is obtained by a 

X 

Fig. 2. The truncated form of the elongated rhombic dodecahedron. Fig. 3. The structure of B a A I  4 s e e n  along a. 
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slip operation in the BaA14 structure, which is 
appreciated when the two structures are compared 
(Figs. 3 and 4). The slip operation transforms the 
original elongated dodecahedra to truncated ones, and 
makes the latter share hexagonal and square faces. For 
an ideal truncated elongated dodecahedron: 

v/2 2d 
a = 2 d  x/3 c = d  + ; c / a = 1 . 3 2 ;  

These common square faces are identical to the square 
windows formed by the elongated rhombic 
dodecahedra. The cubic structure, with a = 9-62 A, has 
the space group Pm3m and there are four different Hg 
positions. Hg(1) and Hg(2) form the truncated elon- 
gated dodecahedron structure, while Hg(2) and Hg(3) 
form the square-antiprism structure, with Hg(4) at the 
centre of the cubo-octahedron. Calculated parameters 
for the structures are given below. 

¢1 
z = - -  = 0.232. 

2c 

Observed parameters, c/a = 1.356 and z = 0.223, 
are in good agreement. 

BaHg~ 

This rather common structure type can be constructed 
from truncated elongated rhombic dodecahedra. In the 
cubic structure these polyhedra have three different 
orientations (Fig. 5). The polyhedra share triangular 
faces (half rhombs) and surround a large cave with 
square windows (Fig. 6). 

The arrangement of these truncated polyhedra also 
creates empty cubes and if these had been centred by 
Hg perfect elongated rhombic dodecahedra would have 
been the building unit. The framework of truncated 
elongated dodecahedra is interpenetrated by a square- 
antiprism structure, similar to that present in the 
Cr23C 6 structure type. A building block consists of six 
square antiprisms (empty) of Hg-sharing comers 
around a Hg-centred cubo-octahedron, and such 
building blocks form the structure with square anti- 
prisms sharing the remaining square faces (Fig. 7). 

Fig. 4. The structure of CeMg2Si 2 seen along a. 

< , / / .  __:; . . . . . . . . . . . . . . . .  : , 

i " 

//,,, ,/ 

Fig. 5. A clinographic projection of the dodecahedral framew61:k in 
BaHg~l. 

z 

L_ ¢ Y 
X 

Fig. 6. The cave created by the truncated elongated dodecahedra in 
BaHglv 

I i i , 

2B ', 

Fig. 7. The interpenetrating framework of square antiprisms in 
BaHgH. 
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(1) Elongated dodecahedron structure: 

4 + x/3 
a = d x/3 = 3.31d;  

d 
- 0 . 1 5 1 ;  xl  - 2a 

a - d  
X 2 - -  ~ - -  0.349. 

2a 

(2) Square antiprism structure: 

a = d  + 2 = 3.10d;  

X2 
a - d  

- - -  0.338; 
2a 

a - d x / 2  
X 3 - -  - -  0-272. 

2a 

The observed parameters are in good agreement with 
these: Hg(1), x = 0.155, Hg(2), x = 0.345, and Hg(3), 
x = 0.275 (Peyronel, 1952). 

ThMn12 

This structure is tetragonal, a = 8.74, c = 4.95 /k, 
space group I4/mmm, with eight Mn in 8(i), x i = 
0.361 and eight Mn in 8(j),  x j  = 0.277 (Florio, 
Rundle & Snow, 1952). The structure has been 
compared with the CaZn  5 structure, but here we 
describe a relation with the CraSi structure (Fig. 8). The 
central tetrahedron in every second Tetraederstern is 
substituted by Th atoms, and every second of the 
remaining Tetraedersterns is rotated 90 °. These 
operations give the structure of ThMn~2, the Th atoms 

being situated in columns of truncated elongated 
dodecahedra. The columns are corner-connected to 
each other and to the remaining Tetraedersterns. 
Calculated parameters are x i = 0.375 and x j  = 0.250;  
e/a calculated from a CraSi structure is 0.50, while it is 
0-66 for a structure with ideal elongated rhombic 
dodecahedra. Exact intergrowth is not possible between 
the two structures and the observed structure is 
between the two ideal ones, having e/a = 0-57. 

Giant unit cells which probably contain elongated 
rhombic dodecahedra 

ThMo2Si2, with a = 4.01, c = 87 .5 /k ,  was reported to 
have a pseudo cell of the BaA14 structure type (Ban & 
Sikirica, 1965), with c eight or nine times the c in 
BaAl 4. Above we pointed out that a simple slip 
mechanism transformed the BaA14 into the CeMg2Si 2 
structure, and, if such faults occurred regularly, 
multiples of c would result. 

CeMgx2(I) is of  the ThMn12 type with a = 10.33, c = 
5.96 /k. CeMg12(II) is also reported to be tetragonal, 
with a = 10-33, c = 77-5 A (Johnson, Smith, Wood & 
Cramer, 1964). The c axis of CeMg12(II) is nearly 13 
times that of CeMg12(I). The structure was described 
as a stacking of 13 tetragonal ThMn12-type cells with a 
slip of a/2 occurring at z = 4/26, 10/26, 17/26 and 
23/26. This slip operation can be understood from Fig. 
8. At the z values mentioned, the columns of truncated 
elongated dodecahedra are interrupted, and new 
columns start to run parallel to the first ones, but in the 
x, y position of the Tetraedersterns. If other slip com- 
binations occur they could be detected by high- 
resolution electron microscopy; in this case, with 
C e - C e  distances of ~6  /~, the lattice-image method 
could be used for direct structure determination. 
Analogously, ThMo2Si2 could be studied with the same 
technique. 

This work was supported by the Swedish Natural  
Science Research Council. 

Fig. 8. The structure of ThMn,2 seen along e. To the right the 
remaining parts of the Cr3Si structure are shown. The central 
Tetraederstern is rotated 90 ° from the Cr3Si position. 
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